Graph Based Statistical Analysis of Network Traffic

Hristo Djidjev
Los Alamos National Lab

djidjev@lanl.gov

Gary Sandine
Los Alamos National Lab
gars@lanl.gov

Curtis Storlie
Los Alamos National Lab
storlie@lanl.gov

Scott Vander Wiel
Los Alamos National Lab
scottv@lanl.gov

ABSTRACT

We propose a method for analyzing traffic data in large com-
puter networks such as big enterprise networks or the In-
ternet. Our approach combines graph theoretical represen-
tation of the data and graph analysis with novel statistical
methods for discovering pattern and time-related anomalies.
We model the traffic as a graph and use temporal charac-
teristics of the data in order to decompose it into subgraphs
corresponding to individual sessions, whose characteristics
are then analyzed using statistical methods. The goal of
that analysis is to discover patterns in the network traffic
data that might indicate intrusion activity or other mali-
cious behavior.

Categories and Subject Descriptors

G.2.2 [Graph Theory]: Graph algorithms; 1.5 [Pattern
Recognition]: Models—Statistical; 1.2.6 [Learning]: Pa-
rameter learning

General Terms
Algorithms, Security, Theory, Experimentation

Keywords
Networks, Protocol Graphs, Graph Decomposition, Patterns,
Statistical Modeling, Anomaly Detection

1. INTRODUCTION

There are two main approaches for detecting malware and
attacks in computer systems: signature based, where a large
database of attack signatures is used to identify an on-going
attack, and anomaly based, in which an unusual activity
pattern is identified. The anomaly detection approach has
the advantage that new types of attacks could be identified
even before their signatures are discovered and catalogued.
To this end, such systems analyze regular users’ activity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MLG ’11 San Diego, CA, USA

Copyright 2011 ACM 978-1-4503-0834-2 ...$10.00

data and build a model of “normal” activity, which is then
compared with real time activity data. Any anomaly, i.e.,
significant deviation from the normal patterns in historical
data, will be considered as potentially triggered by a cyber
attack and further investigated.

One issue associated with such an approach is that there is
typically no information in the available data about which
user generates each particular session and which sessions
are generated by the same user at roughly the same time
and, hence, define a usage pattern. Even information about
which packets belong to the same sessions is only implicit
in the available data. For that reason, other researchers
have focused on global, summary characteristics of the graph
representing the traffic, rather than analyzing the traffic of
individual users. For instance, Iliofotou et al. [6] and [5]
analyze graph characteristics like sizes of graph components
and degree distributions. Collins [1] studies the total num-
ber of connected components and its change over time. Our
goal goes beyond that, we would like to distinguish between
interrelated connections and unrelated connections and we
would like to merge dependent connections (only) into a
graph-represented patterns. Having information about the
traffic of individual users will help us to determine paths reg-
ularly employed by users in order to reach network resources
of interest or compute statistics such as the likelihood that,
say, there is a usage pattern for going from host a to host
b and from host b visiting hosts ¢ and d. Another type of
information that will increase the accuracy of anomaly de-
tection would be if one can combine the information about
the traffic patterns with time information, i.e., how the traf-
fic depends on the time of day or the time of week.

In this paper we propose a graph-based method for analyzing
traffic patterns in a large computer network in combination
with novel statistical methods for discovering time-related
anomalies in data with diurnal trends. We model the traffic
as a graph and extract the subgraphs corresponding to indi-
vidual sessions and use them to develop a statistical model
for the network traffic. The goal of our analysis is to discover
patterns in the network traffic data that might indicate in-
trusion activity or other malicious behavior. We use Cisco
NetFlow records collected at intranet and Internet bound-
aries within a large computer network to construct graphs
describing the host-to-server connections in given time in-
tervals.

Our methodology can be used to design an anomaly detector

that consists of two interacting modules. The training mod-
ule analyzes a database of previously recorded or streaming
traffic data and produces a proper model of “normal” traffic
patterns. The detection module analyzes the between-host
traffic in real time, extracting traffic patterns, and match-
ing them against the usage model in order to estimate how
likely the new traffic is, given the historical data. For this
end, for each pattern (subgraph) in the new traffic data, a
number is associated indicating the likelihood that it corre-
sponds to normal (legitimate) activity. The two modules de-
scribed above process the data simultaneously, since, while
the detection module checks any new traffic for anomalies,
the training module updates the statistical model (usage
statistics), as the time moves along. Clearly, our approach
requires very fast algorithms for extracting and matching
patterns in order to produce results in real time, so we need
to address the algorithmic challenges of our methodology.

We test our framework on data collected at Los Alamos
internal network. We use Cisco NetFlow records collected
at intranet and Internet boundaries within a large computer
network to construct graphs describing the host-to-server
connections in given time intervals.

2. RELATED WORK

The value of analyzing the social relationships between hosts
and servers and in detecting anomalies in the global struc-
ture of the graph representing the communications in a net-
work has been studied in several works, e.g., [2, 5,6, 12].
However, these methods tend to lack fine-grained locality,
something that our approach specifically address.

In this way, our work has some similarity to scan statistics,
which have been widely used to detect local clusters of events
[3,7,10,11]. The scan statistic approach relies on defining a
specified set of sub-regions in space and/or time and looking
for discrepancies in these sub-regions.

Star type regions around nodes have been used by [14] in
a scan statistic approach. Here we construct regions of in-
terest (telescoping subgraphs) in a more sophisticated and
dynamic way in order to closely capture the actions of an
attacker in the network.

Communications in a computer network are also treated in
a local manner in [4]. However, in [4], the anomaly detection
is conducted on each individual edge, so that they are not
leveraging the strength of pooling a neighborhood of edges
as we do in this paper.

3. PROTOCOL GRAPHS

We collect packet header data from routers and network taps
in a large enterprise network. The captured packet headers
are assembled into flows that describe activity between hosts
in the network.

3.1 Secure shell (SSH) protocol flows

While the techniques of our methodology will, with minor
modifications, work for any type of communication proto-
cols, and in future we do plan to apply it to different pro-
tocols and to a combination of protocols, for the analysis
in this paper we consider the subset of flows that we can

Figure 1: An SSH protocol graph for a 10 minute
interval. The nodes are individual hosts in the net-
work and the connections indicate a flow that oc-
curred between hosts during the interval. Multiple
(parallel) edges between hosts are not shown.

identify as using the Secure Shell (SSH) protocol. The SSH
protocol allows encrypted communication connections be-
tween hosts and servers and is typically used for interactive
login to remote hosts or for copying files. The subset of
SSH flows in our flow log data set is easy to identify since
the target port for initializing SSH connections is the stan-
dard TCP port 22. It is possible to run SSH servers that
accept connections on other ports, but for our analysis we
only consider connections to the standard port.

3.2 Construction of SSH protocol graphs

We represent the set of all SSH flow records by a directed
multigraph G(V, E), where the node set V is the set of all
Internet Protocol (IP) addresses of the hosts and servers en-
countered in the data set and the directed edges E represent
the observed SSH sessions starting at a client host and con-
necting to a server (at TCP port 22). Each edge e has time
labels s(e) and f(e) that indicate the start and finish times
of the flow. Note that G is a multigraph, which means that
there might be multiple edges between some pairs (v, w) of
nodes, corresponding to the case where multiple sessions oc-
cur between v and w at different times. We call G a protocol

graph (Figure [I)).

4. DECOMPOSITION ALGORITHMS
4.1 Telescoping graphs (TSGs)

Our objective is to partition a protocol graph G into sub-
graphs that we call telescoping subgraphs that are likely to
correspond to a set of interrelated SSH sessions initiated by
a single user or attacker. We call such set a supersession.
For instance, in a supersession, a user can start at host a,

3,5
[3,5] (2,6]
O
[3,8]
[5,8]
[2,10] 271
[0,10]
) e)
(<]) .\) ./ \. ./.)
A
QQ\I\ La| o o < o
)) e

Figure 2: TSG decomposition. Pairs of numbers on
each edge denote the start and the end times of the
session. (a) A protocol graph G. (b) Decomposition
of G into TSGs.

SSH from host a to b, go from b to ¢, and after finishes a job
at ¢ goes from b to d. Such a supersession will be represented
by a TSG with a node set {a,b,c,d} and with an edge set
{(a,b), (b,c), (b,d)}. Our goal is to represent G as a union of
TSGs and to design a very efficient algorithm for computing
such a decomposition. First we formalize the notion of a
TSG.

A telescoping graph (TSG) is a connected directed graph T’
that satisfies the following two conditions (Figure [2)):

1. For any two edges e1 = (v,w) and ez = (w,u) of T,
the inequalities

s(v,w) < s(w,u) and f(v,w) > f(w,u) (1)
are satisfied.

2. There is a node r called root with no incoming edges
such that all nodes in T" are reachable from 7.

The inequalities , which we call the telescoping conditions,

ensure that the session represented by edge e; should be
active during the entire period when the session represented
by edge ez is open, or otherwise the second session cannot be
initiated by the first one. The root node r from Condition
2 corresponds to a host from which the entire supersessions
is initiated.

If the starting and finishing times of the edges of G are
distinct, then each TSG is a directed acyclic graph (DAG),
meaning that it does not have a directed path from a node
to itself.

A TSG-decomposition of G is a sequence of TSGs S =
{T1,..., Tk} satisfying the following conditions (Figure [2):

1. Any two TSGs in S are edge-disjoint.

2. The union of all TSGs in S covers all nodes and edges
of G.

3. Fori=1,...,k, T;is a mazimal TSG in the graph
G, = G\ (T1U---UT;_1), meaning that there is no
other TSG of GG; that contains T; and has more edges.

It is clear that a TSG decomposition exists for any protocol
graph, but it may not be unique. For instance, if the edge
(b, f) from Figure |2l had a time label [3,11], the edge (f,e)
could form TSG either with (b, f), forming a TSG consisting
of the set of edges {(b, f), (f,e)}, or with (c, f), forming the
TSG with edges {(c, f),(f,e)}. In order to deal with the
ambiguity, we introduce two methods to break the ties:

(i) If (v,w) is an edge in G and (u1,v),... (uk,v) are all
edges in G with target v that satisfy the telescoping
condition, sorted in order of increasing start times,
then (u1,v) and (v,w) are in the same TSG. We call
such decomposition an earliest-first TSG decomposi-
tion.

(ii) In the same situation as above, we choose the edge
(uk,v) that has latest start time to be in the same
TSG as (v, w).

We call such decomposition a latest-first TSG decomposi-
tion. There are other possible strategies that can be used,
but in this paper we don’t study this issue in detail. Here-
after, if not specified otherwise, we assume that the decom-
positions are latest-first TSG decompositions.

4.2 Efficient computation of a TSG decompo-
sition
Our algorithm for computing a latest-first TSG-decomposition
of G first constructs an ancillary graph H associated with
G. H has a node for each edge of G and an edge between
any two nodes v1 and vy of H whose corresponding edges e1
and ez would be adjacent in a TSG of the desired decompo-
sition, i.e., such that (i) e1 and es belong to the same TSG
in a latest-first TSG-decomposition, and (ii) e; and ez are
”adjacent”, meaning that the target of e; is the source of
e2 or vice versa. Then the TSGs are exactly the connected

components of H and can be computed in time linear to the
number of the edges of H.

In order to construct H, for each node v of G the algorithm
considers the set Soy+ of all outgoing edges from v and the
set Sy, of all incoming edges in v. It then connects each edge
€out Of Sout With the first edge e;, of Si, for which the pair
of edges (ein, €out) satisfies the telescoping conditions. The
order of the edges in S;,, is essential. Since we are interested
in a latest-first decomposition, the order of the incoming
edges should be decreasing with respect to the starting time.
For that reason, the edges of S;, are sorted in decreasing
order prior to computation of the edges of H corresponding
to node v..

Similarly, if the sorting of S;,, is done in increasing order with
respect to the staring time, the resulting modified algorithm
will construct an earliest-first TSG decomposition.

The running time of the algorithm is dominated by the time
for computing H. Let, for any node v in G, in(v) and out(v)
denote the number of incoming and outgoing edges for v,
respectively, and let deg(v) = in(v) 4 out(v). Let

2
) = 1)+ 1jout@)

denote the harmonic mean of in(v) and out(v) and let Amaz =
maxyec h(v). Then the time for that loop can be estimated
by

T=0[|V(@)|+ Y (in(v)out(v))

veV(G)

0|ty () fing) 4 oui(a)

e in(v) + out(v)
deg(v)>0

=0 <n + hmaz - Z deg(v)) = O(n + hmazm),
veG

where n = |V(G)| and m = |E(G)|. The analysis shows

that, for classes of graphs G for which hmaes = O(1), the

running time of Algorithm 1 is linear in the size (the number

of the nodes plus the number of the edges) of G. In our data

hmae 1S approximately 44.

Algorithm 1 is not only theoretically efficient, but also fast in
practice. We have implemented the algorithm and tested its
efficiency on our data. For instance, processing a multigraph
of 3.3 million edges takes less than 10 seconds on a desktop
PC.

4.3 Computing TSG probabilities

The algorithm in the previous section produces a set of TSGs
for each past time window. Based on that information, we
want to be able to estimate the likelihood of any new TSG.
One way to address that is to create a database of all en-
countered TSGs and, given any new TSG T, to determine
whether a TSG identical to T is contained in the database.
The problem with such an approach is that, because of the

huge number of possible TSGs, it will happen very often
that T is not in the database, generating many false posi-
tives. Moreover, the result of any query is binary, i.e., T is
either in the database or not, and there is nothing in-between
to allow a more varied and nuanced assessment.

For that reason, we develop a user model that allows, for
any TSG T of the protocol graph G, to compute a number
between 0 and 1 that corresponds to the probability that
T occurs in the network traffic based on the available data.
We denote by S the set of all TSGs encountered so far or
encountered in a past time window of a specified time length.
We define, for each node v of G, a number wt(v) equal to
the number of all edges in G with source v. For each edge
e of G we define a number wt(e) equal to the number of all
parallel edges in G with the same endpoints as e. The user
model we design assumes that the TSGs are generated as
random graphs using the following process:

(i) Choose a random size s of a TSG based on the fre-
quency of the sizes in S|

(ii) Choose a random start node r among all nodes of G
with probability proportional to wt(r) and add it to T}

(iii) Until the size (the number of edges) of T is s, add an
edge e to T among all edges whose sources are nodes al-
ready in T and with probability proportional to wt(e).

This model directly leads to an algorithm for assigning a
probability to any TSG 7', defined as the product of all
probabilities from steps (i), (ii) and all steps (iii) in the user-
model procedure. For computing the individual probabilities
we need to compute and dynamically maintain the values
wt(v) and wt(e) defines above, the numbers sz(s) of all TSGs
of a given size s, the number wt(G) of all edges of G, and
the number of all edges with sources nodes currently in 7T'.
For instance, if T" has a root node r, the probability from
step (i) is sz(|T|)/|S| and the probability from step (ii) is

wt(r)/wt(G).

S. STATISTICAL ANALYSIS METHODOL-
OGY

5.1 Approach overview

Given traffic log data, we divide the entire time interval
covered by the data into 10 minute subintervals we call time
windows. Then, for each time window, we compute a TSG
decomposition and corresponding probability scores. The
goal is to monitor the TSGs over time and flag subgraphs
that are anomalous in the sense of having a combination
of unusually large size and a rare set of edges. Without
having information on usage patterns, an intruder will find
it difficult to avoid creating such subgraphs.

Let n: denote the number of TSGs in the decomposition for
time window ¢. For the i-th TSG, let ;. denote its size
(number of edges) and y; + denote its probability score. The
following subsections describe a method for modeling TSG
decompositions in terms of the quantities n¢, i and y; .

The main idea of our approach is that, in the training mod-
ule, we represent x;; and y;: as random variables coming

from a probability distribution that depends on a number
of parameters which are functions of ¢. By substituting z; .
and y;,; with the values of the observations in the given time
window, we obtain a system of equations that can be used
to estimate the parameters. Based on that information, we
get a predictive model for future values of z; + and y;+. In
the detection module, if the values we actually observe devi-
ate substantially from the prediction, we trigger an anomaly
alert.

The main challenges in implementing this idea are (i) the
distribution of the probability score y; ¢, even after condi-
tioning on the value of the size x;, is very heavily tailed
under normal network activity, (ii) the distribution of the
size x; is not modeled well by typical parametric models,
and (iii) the distributions of z; + and y;,; are likely to exhibit
diurnal trends. In the following we describe a novel approach
to modeling x;+ and y; ¢, which explicitly addresses all of
these issues.

5.2 Modeling the Data

We model the probability scores y; ¢ conditional on a given
size x as coming from a noncentral t-distribution [15] with a
mean that varies over z and all parameters varying smoothly
over time t. The noncentral t is used to capture skewness
and heavy-tailed behavior that is observed in plots similar
to the probability scores calculated from our data set. Using
a family of distributions that includes heavy tails can better
accommodate the diversity of probability scores and lead
to more controllable false alarm rates when monitoring for
anomalies.

The sizes of the TSGs z;+ are modeled by a flexible fail-
ure time type distribution, called the discrete hazard (DH)
model [9], with a discrete hazard rate that varies smoothly
over time. We use the DH model in order to avoid speci-
fying a specific parametric form for the distribution of size,
which may be somewhat restrictive. The DH allows for any
discrete distribution, while encouraging smoothness of the
hazard rate is an intuitive way to limit the degrees of free-
dom involved in the estimation.

We will use the logit function defined as logit(y) = log[y/(1—
y)] in order to transform the TSG probability scores from
the interval (0, 1) to the real line for numerical stability and
convenience of modeling with the noncentral t-distribution.

Moreover, recall that 2 denotes “independently distributed

as” and < denotes “independently and identically distributed

as’.

In our model, at each time ¢t € {1,2,...}, we have observa-
tions (x4, 9:,t), © = 1,...,m¢, where the size x;; takes on
positive integer values, and the probability score y;: is in
the interval [0, 1]. We model the observations as

logit(ye) | zie ™ T(ue(is), o8, ve, 1) (2)
Lt i DH(ﬂ-t)v (3)

where 7 (m,v,v,n) represents a scaled noncentral t distri-
bution with mean m, variance v, degrees of freedom v, and
noncentrality parameter 7 and DH(7) is a distribution with

discrete hazard (DH) function = = m(z):

Pr(X = z|r) = n(z) 1:[(1 —7(j)), forx=1,2,.... (4)

As a result of the representations , , and , ;¢ and
vi.+ are defined as functions based on parameters pit, o7, vt, 1,
and 7. The functions p and 7 each depend on the TSG size
xz, and we parameterize them in terms of basis functions:

pe(z) = Zﬁz,j(w)/lj(w’) (5)

logit[m: ()]

3 (@) By @), (©

The functions A, ..., Awm, and Bi,. .., Bm,, are basis func-
tions that need to be specified. Based on visual inspection
of the data (e.g., Figures[d]and[F)) we choose both {A;} to be
linear spline bases with knots at z = {2, 3,4, 5,6, 8,10,12, 14,
16,18,20,25}. We also take {B;} to be a natural linear
spline basis functions with knots at = {2, 3,4, 5,6, 8,10}.
The natural linear spline for 7(z) is chosen in part because
we need to ensure that the hazard function is regular, in
the sense that Pr(X < oo) = 1 in (4). This property is
guaranteed if 7(z) is constant for large x, as is the case for
a natural linear spline. We chose to place the largest knot
at x = 10 for 7(x) to guarantee enough data past the last
knot for purposes of stability in estimation. Estimation of
the mean function p(z) is much more stable and could thus
tolerate more knots.

Therefore, the © variables depend on parameters 8, = [3,1,

.,ﬂt,mu,af, ve,] and the y variables depend on param-
eters v, = [V,1,...,Vt,m,]. Estimation of the parameters
6; and ~, is conducted via a regularized likelihood based
approach detailed in the Appendix. Specifically, we maxi-
mize a penalized likelihood, which is exponentially weighted
back in time in a manner to explicitly account for diurnal
patterns in the data.

As a result, we compute the one-step-ahead estimates for 0,
and «,, which we denote by 6,,_; and ’?t‘t_l, respectively.

5.3 Using the Model to Detect Anomalies

We suppose that a given pair (x;,y:,:) demonstrates evi-
dence of an anomaly in this setting if x; + is large and y; ¢ is
small. This is a TSG with a large size and a small proba-
bility score. Let X: and Y; represent random variables from
the model and with one-step predictive parameters
ét‘t_l, Y¢j¢—1- For a given time ¢, we calculate the probabili-
ties of exceeding the observed values, (xs,¢, yi,¢) ¢ = 1,...,ng,
then combine them together in a rigorous manner to create
a single p-value for anomalousness at time ¢. Specifically, at
time t, for each (s, y:,), we calculate

Tit
pit1 = Pr(Xe>xi| 1) = H (1 — Ty (w))

xz—1
pire = Pr(Yy>wyis| fuje—1, 671, Tit) (7)
= ®(yit; fuje—1, 61101

where ®(-;m, v) is the cumulative distribution function of a
normal distribution with mean m and variance v. We then
use

wy = min {pi 1 Pit,2}, (8)
i=1,..., n¢

to measure anomalousness of the TSGs in the ¢-th time bin.
Assume that w; represent a random variable with a distribu-
tion equal to that of the minimum product of n; pairs of uni-
form variables (under the assumption that network activity
follows our model at time ¢, the p’s will have approximately
uniform distributions). This means that the distribution
of w¢ is that of the minimum of n; independent observa-
tions from negative-log-Gamma(2,1) distribution. The the
p-value for anomalousness at time ¢ is then

pe = Pr(Q <wi) = 1 - [G(~logws 2, 1), (9)

where G(; a, b) is the cumulative distribution function (CDF)
of the Gamma distribution with shape and rate parameters
a and b, respectively. We set a threshold ¢ (e.g., ¢c=0.001)
and if ps < ¢ at some time then the identified TSG (the
¢ that minimizes (8)) can be sent to an analyst for further
inspection. In practice, ¢ will need to be set to a level to
produce a tolerable number of false alarms per week.

6. EXPERIMENTS

For our experiments we have used a subset of the LANL
traffic data set described above covering a two-month period
and, for each 10 minute time window, we have computed a
TSG decomposition and corresponding probability scores.
Figure |3 displays a time series of Z; = —®(p;) over one
month of data, where ® is the standard normal CDF, so
that large values of Z; indicate anomaly on a normal scale.
The most significant anomaly occurs on Tuesday of the first
week. The data point corresponding the this time bin is
highlighted in red (point A).

Anomaly Time Series Plot

L o

<]

j53

o _]

»

5 J

o

T O

£

S —

< 1
o |
)
)
i

M TWThMTWThMTWThMTWThM T W Th

Time

Figure 3: Anomaly time series plot over four weeks
of SSH data from LANL’s internal network during
August 2009.

Figure |4 shows a one-step-ahead predictive model for y, | =+
during the time bin of the most significant anomaly with the
data point A. To contrast this, Figure [5] displays the same
plot during a more typical time bin which corresponds to the
data point highlighted in blue in Figure [3| (point B). The
data point B corresponds to very “typical” TSG. The most

significant anomaly, point A, has a large TSG probability
score y; + along with a large size, which both contributed to
the small p; value.

Model Fit with Observations (Anomalous)

Q
3 4
4
— Mean
95% Pls
—— 95% Simultaneous Pls
L o
Qo O© -
o -
(2]
el
Q
o
5 Q
‘_g’ 0
o 4
T T T T
5 10 15 20
Size

Figure 4: One-step-ahead fitted probability score of
TSG versus size during the anomalous time bin.

Model Fit with Observations (Normal)

Q
3 4
— Mean
95% Pls
95% Simultaneous Pls
L o
S O -
o -
(2]
el
[
o
5 <o
8 0
[)
o)
o 4
T T T T
5 10 15 20
Size

Figure 5: One-step-ahead fitted probability score of
TSG versus size during a typical time bin.

Figure [6]shows a one-step-ahead complementary cumulative
distribution function (CCDF) (i.e., one minus the CDF') for
x4 using the one-step-ahead cross-validated (CV) [13] opti-
mal tuning parameters to fit the model along with the actual
data for a given time point. It shows the probability of ex-
ceeding a given size decreases rapidly at first, then flattens
out behaving like a geometric distribution in the tail (linear
on a log scale as in the figure).

Figure[7]displays the anomalous subgraph with heat colored
edges to indicate the relative contribution of each edge to the
anomaly score. This plot can be used as a diagnostic tool,
and passed to a computer security specialist for aid in further
analysis. For example, it can be inferred from the plot that
the edges (1,7), (1,8), (1,9), are the most responsible for
the anomaly and as such should be the starting point for
further investigation.

Complementary CDF for Size

-1

log10 Pr(X > x)
-2

Size

Figure 6: One-step-ahead fitted complementary CDF
for Size during the anomalous time bin on a logit
scale. The probability of a size of X > 12 (i.e., the
size4of the TSG responsible for the anomaly) is 5.37 %
107%.

7. CONCLUSION

We have described a methodology for representing the SSH
communications in a large network as a time-labeled graph
and decomposing that graph into subgraphs correspond-
ing to interrelated sessions we call telescoping subgraphs
(TSGs). We also described a statistical approach for analyz-
ing TSG decompositions that takes into account the diurnal
patterns of the communications and computes on that basis
a predictive model for future traffic that can be used to de-
tect anomalies. Our research leaves a number of problems
for future study, such as analyzing the dependency of the
results on the tie-breaker method used when defining TSGs,
e.g., latest-first vs. earliest-first, developing other models
that can be used to compute the probability of a TSG, and
optimizing the model parameters. It will also be interesting
to check how the approach works on other network proto-
cols.

8. ACKNOWLEDGMENTS

The authors acknowledge and appreciate the support pro-
vided for this work by the Los Alamos National Labora-
tory Directed Research and Development Program (LDRD,
project number 20110093DR). They would like also to thank
Aric Hagberg for many helpful discussion and for drawing
two of the figures.

9. REFERENCES

[1] M. Collins. A Protocol Graph Based Anomaly
Detection System. Ph.D. Thesis, Carnegie Mellon
University, Pittsburgh, PA 15213, April 2008.

[2] M. P. Collins and M. K. Reiter. Hit-list worm
detection and bot identification in large networks
using protocol graphs.

[3] J. Glaz, J. Naus, and S. Wallenstein. Scan Statistics.
Springer-Verlag, 2001.

[4] N. Heard, D. Weston, K. Platanioti, and D. Hand.
Bayesian anomaly detection methods for social
networks. Annals of Applied Statistics, 4(2):645-622,
2010.

QOOOCOOOO®O®

Edge Anomaly Level o

Low

®

Figure 7: The anomalous subgraph leading to the
red data point in Figure [3| with heat colored edges
to indicate the edge contribution to the anomaly

[5] M. Hiofotou, M. Faloutsos, and M. Mitzenmacher.
Exploiting dynamicity in graph-based traffic analysis:
Techniques and applications. In ACM CoNEXT, New
York, NY, USA, December 2009. ACM.

[6] M. Hiofotou, P. Pappu, M. Faloutsos,

M. Mitzenmacher, S. Singh, and G. Varghese. Network
traffic analysis using traffic dispersion graphs (TDGs):
techniques and hardware implementation. Technical
report, UCR, May 2007.

[7] M. Kulldorff. A spatial scan statistic. Communications
in Statistics- Theory and Methods, 26(6):1481-1496,
1997.

[8] D. Lambert and C. Liu. Adaptive thresholds:
Monitoring streams of network counts. Journal of the
American Statisitcal Association, 101:78-88, 2006.

[9] N. Mantel and B. Hankey. A logistic regression
analysis of response-time data where the hazard
function is time dependent. Communications in
Statistics - Theory and Methods, 7(4):333-347, 1978.

[10] J. Naus. Approximations for distributions of scan
statistics. Journal of the American Statistical
Association, 77(377):177-183, 1982.

[11] J. Naus and W. S. Temporal surveillance using scan
statistics. Statistics in Medicine, 25(2):311-324, 2006.

[12] C. C. Noble and D. J. Cook. Graph-based anomaly
detection. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and
data mining, KDD ’03, pages 631-636, New York, NY,
USA, 2003. ACM.

[13] R. R. Picard and R. D. Cook. Cross-validation of
regression models. Journal of the American Statistical
Association, 79(387):pp. 575-583, 1984.

[14] C. E. Priebe, J. M. Conroy, and D. J. Marchette. Scan
statistics on enron graphs. In Workshop on Link
Analysis, Counterterrorism and Security, Newport
Beach, CA, 2005.

[15] A. van Aubel and W. Gawronski. Analytic properties
of noncentral distributions. Applied Mathematics and
Computation, 141(1):3-12, 2003.

APPENDIX
A. MODEL ESTIMATION DETAILS

Here we describe the estimation procedure for the parame-
ters of the model in Section [f-2} We use a penalized like-
lihood, which is exponentially weighted back in time in a
manner to explicitly account for diurnal patterns in the data.

Let y, = (Y1,t---,Yns,t) and @ = (T14,...,Tn,¢)". The
log-likelihood for y, | x; is given by

ny
Wy 00,20) = Y log ¢ (logit(yi,e); (i), 0%, v, me,) (10)

=1

where ¢(-;m,v,v,n) is the density function for a scaled non-
central t distribution with mean m and variance v, degrees
of freedom v, and noncentrality parameter 7. Further, let
Y1 = [Y1s-- 1 Ys_1,Yy)s and 1y = [@1,...,@e—1,2¢]. The
weighted log-likelihood for y,., is given by

t o]
l(ylzt;etvml:tvhy) = Z { |:Z K(t,S,d, hy):| l(ys; 0,5,1133)}
s=1

= (11)

and K (t,s,d, hy) is a weight function that decomposes as
K(t7s7d7 hy) = KD(d7 hy@)KB(f,S,d, hy,b) (12)

where Kp is a daily component and K is a bin-to-bin com-
ponent described below and where hy = (hy,q4, hy,p) denote
tuning parameters to be chosen via cross-validation as dis-
cussed below. The individual kernels that make up K are,

Kp(d,h) = (1 —h)%, (13)

Kp(t,s,d,h) = (1= k)l =07, (14)

where T' is the number of time bins per day. This is similar
in nature to the EWMA approach for data with diurnal
trends discussed in [8]. Figure[8]displays the intuitive nature
of the weight function K, using half-hour time bins to aid
illustration, instead of the 10-minute bins used for the data
analysis.

Finally, one-step-ahead estimates ém,l for 0; are obtained
by maximizing the expression

— WYy 13 00, @101, hy) + N Y [Dpu(x))? (15)
=3

over 0, where
D?g(z) = g(z) — 2g(z — 1) + g(z — 2)

is the second difference penalty operator. The penalty rep-
resents the sum of the squared second order differences for
u(z), which is a discrete analog of the common practice
of penalizing the integral of the squared second derivative.
This penalties encourage smooth mean function. For our
parametrization using linear splines, the penalty is equiv-

day
6
|

I I I I
0 5 10 15 20

hour of day

Figure 8: Geometric display of the weight func-
tion K. This example uses half-hour bins and the
smoothing parameters are h, 4 = 0.17 and hy;, = 0.13,
corresponding to effective bandwidths of 11 days and
14 half-hour bins respectively.

alent to the sum of the squared changes in slopes at the
knots. The penalty weight A, is selected by cross-validation
as described in more detail below.

The coefficients v, for the hazard function 7 (z), are esti-
mated in a similar fashion, i.e., with a kernel weight function
over time bin and between consecutive days and a D*logitn ()
penalty to encourage smoothness in the hazard rate function
over .

The two sets of tuning parameters for y and x, respectively,
need to be chosen via cross-validation. This is done, by
computing the predictive (out of sample) likelihood for y,
using the one-step-ahead predictive models for y, | x:and
x;, respectively.

	Introduction
	Related Work
	Protocol graphs
	Secure shell (SSH) protocol flows
	Construction of SSH protocol graphs

	Decomposition algorithms
	Telescoping graphs (TSGs)
	Efficient computation of a TSG decomposition
	Computing TSG probabilities

	Statistical Analysis Methodology
	Approach overview
	Modeling the Data
	Using the Model to Detect Anomalies

	Experiments
	Conclusion
	Acknowledgments
	References
	Model Estimation Details

